
General tips for testing in an agile environment: 

Plan testing activities in advance: 
• Identify what needs to be tested, and when. 

• Define testing objectives and goals. 

• Determine testing resources and timelines. 

Work collaboratively with the development team: 
• Participate in code reviews. 

• Use pair testing to test specific pieces of code with developers. 

• Communicate regularly with developers and product owners. 

Create test cases and scenarios: 
• Write test cases that are clear and concise. 

• Create test scenarios that cover the most critical parts of the system. 

• Prioritize testing activities based on risks and business needs. 

Use automation for testing activities: 
• Implement automated testing where possible. 

• Use test automation frameworks to streamline testing processes. 

• Use continuous integration and delivery pipelines to run automated tests. 

Execute testing activities: 
• Run tests regularly. 

• Report issues and bugs in a clear and concise manner. 

• Use exploratory testing to quickly identify issues and provide feedback to developers. 

Monitor and evaluate testing activities: 
• Monitor testing activities to ensure they align with project goals. 

• Evaluate testing activities to improve quality and efficiency. 

• Use metrics and feedback to continuously improve testing processes. 

Use a risk-based approach to testing: 
• Identify potential risks to the system and prioritize testing activities accordingly. 

• Focus on testing areas that are most critical to the business and end-users. 

• Adjust testing priorities as needed to address changing risks. 

Use test-driven development (TDD): 
• Write tests before writing code to ensure that code meets the intended functionality. 

• Use TDD to improve code quality and prevent defects. 



• Use TDD to improve test coverage and ensure that tests are focused on critical areas of the 

system. 

Use behaviour-driven development (BDD): 
• Write tests in a human-readable format that can be understood by both technical and non-

technical team members. 

• Use BDD to improve collaboration between testers, developers, and product owners. 

• Use BDD to improve test coverage and ensure that tests align with business needs. 

Test for accessibility and usability: 
• Ensure that software is accessible to users with disabilities. 

• Test usability to ensure that software is easy to use and meets the needs of end-users. 

• Test for performance and scalability to ensure that software can handle anticipated user 

traffic and loads. 

Implement continuous testing: 
• Use continuous integration and delivery pipelines to automate testing processes. 

• Run tests automatically after code changes or deployments. 

• Use feedback from continuous testing to improve the quality and efficiency of testing 

processes. 

Test for security: 
• Ensure that software is secure and meets industry standards for security. 

• Test for vulnerabilities and potential security breaches. 

• Work with security experts to identify potential threats and develop appropriate testing 

strategies. 

Test for compatibility: 
• Ensure that software is compatible with different operating systems, browsers, and devices. 

• Test for compatibility with different versions of third-party software and APIs. 

• Test for interoperability with other systems and software. 

Use crowd testing: 
• Use external testing resources to supplement internal testing efforts. 

• Use crowd testing to test software in different environments and with different users. 

• Use crowd testing to test for compatibility, accessibility, and usability. 

Conduct user acceptance testing (UAT): 
• Involve end-users in the testing process to ensure that software meets their needs and 

expectations. 

• Use UAT to gather feedback and insights from end-users. 

• Use UAT to improve the overall quality and user experience of the software. 



Use exploratory testing: 
• Use exploratory testing to find defects and identify issues that may not be found through 

scripted testing. 

• Use exploratory testing to test new features or functionality. 

• Use exploratory testing to improve overall test coverage. 

Implement performance testing: 
• Test the software for its performance under varying workloads and conditions. 

• Use performance testing to identify and eliminate bottlenecks in the software. 

• Test the software to ensure it can handle the expected number of users and transactions. 

Use test environment management: 
• Manage the test environment to ensure that it is up to date and reflects the production 

environment. 

• Use virtualization to create and manage test environments. 

• Use containerization to create and manage test environments in a more efficient manner. 

Document test results: 
• Document test results for traceability and accountability. 

• Use test management tools to capture and report test results. 

• Document issues and defects to facilitate communication with developers and other team 

members. 

Review and improve testing processes: 
• Conduct regular reviews of testing processes to identify areas for improvement. 

• Use metrics and feedback to identify areas for improvement. 

• Continuously improve testing processes to improve efficiency and effectiveness. 

 


	General tips for testing in an agile environment:
	Plan testing activities in advance:
	Work collaboratively with the development team:
	Create test cases and scenarios:
	Use automation for testing activities:
	Execute testing activities:
	Monitor and evaluate testing activities:
	Use a risk-based approach to testing:
	Use test-driven development (TDD):
	Use behaviour-driven development (BDD):
	Test for accessibility and usability:
	Implement continuous testing:
	Test for security:
	Test for compatibility:
	Use crowd testing:
	Conduct user acceptance testing (UAT):
	Use exploratory testing:
	Implement performance testing:
	Use test environment management:
	Document test results:
	Review and improve testing processes:


